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AN ANALYSIS OF LAMINAR FREE-CONVECTION FLOW AND HEAT TRANSFER
ABOUT A FLAT PLATE PARALLEL TO THE DIRECTION
OF THE GENERATING BODY FORCE'!

By Smon OstRACH

SUMMARY

" The free-convection flow and heat transfer (generaied by a
body force) about a flat plate parallel to the direction of the body
force are formally analyzed and the type of flow is found to be
dependent on the Grashof number alone. For large Grashof
numbers (which are of inferest in aeronautics), the flow 18 of
the boundary-layer type and the problem is reduced in a formal
manner, which 18 analogous to Prandtl’s forced-flow boundary-
layer theory, to the simultaneous solution of two ordinary
differential equations subject to the proper boundary conditions.

Velocity and temperature distributions for Prandtl numbers
of 0.01,0.72,0.733, 1, 8, 10, 100, and 1000 are computed, and
it 18 shown that velocities and Nusselt numbers of the order of
magnitude of those encountered in forced-convection flows may
be obtained in free-convection flows. The theoretical and
experimental velocity and temperature distributions are in good
agreement.

A flow and a heal-transfer parameter, from which the impor-
tant physical quantilies such as shear stress and heat-trangfer
rate can be computed, are derived as functions of Prandl num-
ber alone. Comparison of theoretically computed values of the
heat-transfer parameter with values obtained from an approwi-
mate caleulation and experiments yielded good agreement over a
large range of Prandtl number. Agreement between the
theoretical values and those obtained from a frequently used
semiempirical heat-transfer law was good only in restricted
Prandtl number ranges (depending on an arbitrary constant).

INTRODUCTION

Two important types of fluid flow problems involving hegt
transfer are those of forced and those of free convection.
By forced-convection flow is meant flows maintained mechan-
ically as, for example, by a pressure drop or an agitator.
Free-convection flow, on the other hand, results from the
action of body forces on the fluid, that is, forces which. are
proportional to the mass or the density of the fluid. The
flow is generally produced in the following manner: Consider,
for example, 2 fixed object (such as a plate) in a quiescent
fluid subject to a body force. When the plate is at the same
temperature as the surrounding fluid, the body forces acting
on the fluid are in equilibrium with the hydrostatic pressure
and no flow ensues in the steady state. If a temperature
gradient normal to the body force is imposed by heating
(or cooling) the plate, there will exist a defect (or excess) of

body force because of the decreased (or increased) density,
with the fluid closer to the plate having the greater defect
(or excess) than that away from the plate. This unbalance
of the forces causes the fluid to be accelerated with the
particles nearer the plate moving more rapidly than those
farther from the plate. Free-convection flow has usually
been considered to be generated in a gravitational field where
the previously mentioned defect or excess of body force was
the Archemedian (buoyancy) force. However, since cen-
trifugal forces are also proportional to the fluid density, free-
convection flows can also be set up by the action of such
forces. (See ref. 1 for & more explicit discussion of the
development of.free-convection.flows by centrifugal forces.)

Free-convection flows produced by centrifugal forces are
now of practical importance in aeronautics because many
aircraft propulsion systems contain components (such as gas
turbines and helicopter ram jets) which rotate at high
speeds and in which heat is being transferred. The method
of free-convection cooling of gas-turbine rotor blades where
the centrifugal forces create a free-convection flow of the
coolant in the blade passages is an example of a practical
application of the free-convection phenomenon in aero-
nautics. Also, free-convection flow due to centrifugal force
is superimposed on the flow through helicopter ram jets and
on the flow of cooling air in hollow rotor blades of air-cooled
turbines . and, under proper conditions, can appreciably
influence the resultant flow and heat transfer.

‘As a simplification of the many free-convection problems
which are now of some consequence in aeronautics, consid-
eration is here given to the special case of free-convection
flow about a flat plate parallel to the direction of the gener-
ating body force. The experimental and theoretical consid-
erations of Schmidt and Beckmann (ref. 2) concerning the -
free-convection flow of air subject to the gravitational force
about a vertical flat plate constitute the most complete
treatment of this subject up to the present time. Eckert
(ref. 1) as well as others has further verified and extended
the experimental results of Schmidt and Beckmann, and
Schuh (ref. 3) has extended the numerical calculations by
computing the velocity and temperature distributions for
several Prandtl numbers different from that for air. How-
ever, all the theoretical work in these references is based on
the incompressible equations in which the density (or tem-
perature) variation is introduced in the buoyancy term alone.
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Various terms are omitted from the equations at the start
on the basis of either intuitive arguments or no arguments
at all. Although a theoretical development made in such a
manner led to good final results, the significance of all the
important factors associated with the free-convection flow
phenomenon is not obtained from such an analysis.

The problem of free-convection flow as produced by a body
force about a flat plate in the direction of the body force was
studied at the NACA Lewis laboratory during 1951 and is
treated in a formal and more general manner herein. The
method used is somewhat similar to that used in reference 4
wherein consideration was given to the free-convection flow
at high Grashof numbers in a horizontal cylinder which had a
variable surface-temperature distribution. The application
of this method to the present problem leads to & development
which is analogous to Prandtl’s treatment of high Reynolds
number forced-convection flows. Although the final equa-
tions obtained by this method are the same as those of
Schmidt and Beckmann, this more general approach not only
clearly demonstrates the significance of all the important
parameters and assumptions and hence leads to a better
understanding of this type of flow but also indicates the
quantitative limitations of the theory. In addition, the
numerical solutions of references 2 and 3 are herein extended
to cover a more complete range of parameters. The new
calculations yield information on the free-convection flow for
Prandtl numbers correspondmg to those of liquid metals,
gases, liquids, and very viscous fluids.

ANALYSIS
STATEMENT OF PROBLEM AND BASIC EQUATIONS

The steady-state equations expressing the conservation of
mass, momentum, and energy for a compressible, viscous,
and heat-conducting fluid subject to & body force together
with an equation of state govern the flow and associated
temperpture distribution aboyt the plate. These equations
in Cartesian tensor notation are (see ref. 5), respectively,
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(A complete list of the symbols used herein is given in
appendix A.) For the two-dimensional case, equations (1)
to (4) represent a system of five equations in the five depend-
ent variables U, Uy, p, P, and 7. For later uss, equatlon 4)
can be written

dp=p(K dP—p dT) (4a)

where K and 8 are the coefficients of isothermal compressi-
bility and volumetric expansion, respectively (see ref. 6). In
addition to a general state equation, such as is given in
equations (4) or (4a), it will be convenient at times in the
discussion to refer to some specific state equation. To this
end, the“equation of state for an ideal gas

P=pRT (4b)
will be used.

Particular consideration is here given to the two-dimen-
sional free-convection flow about a semi-infinite vertical flat
plate. The X;-axis of the coordinate system is taken ulong
the plate and the X;-axis, normal to it. No distinction is
made as to the specific type of body force actmg, for example,
gravitational or centrifugal, but the force is assumed to be
acting in the vertical direction only (that is, parallel to the
plate). Centrifugal and Coriolis forces which are connected
with flows on curved paths and with rotating systems
generally vary with position and velocity. However, in
order not to make the analysis unduly complicated, the body
force is taken to be constant. '

In order to define the problem clearly, a choice must still
be made of the position of the origin of the coordinate sys-
tem. Before making a definite decision on this point, note
that for constant plate temperatures there are four permu-
tations of the body-force direction (either upward or down-
ward) and the plate thermal condition (either heated or
cooled) which will lead to free-convection flows. Once the
position of the edge of the plate, which is also to be the
origin of the coordinate system, is decided, there are two
combinations of the body-force direction and plate thermal
condition that will yield flows which proceed away from the
edge. It is this type of flow that is amenable to the type of
analysis to be made here. This point will be more fully dis-
cussed subsequently. If the edge of the plate (recall that a
semi-infinite plate has but one edge) is taken at the bottom of
the plate (that is, the plate extends to 4+« in the X-direc-
tion), the two combinations leading to flows in the proper
direction (upward in this case) are, respectively, the body
force acting downward with a heated plate and the body
force acting upward with a cooled plate. The equations
developed for one of the cases reduce directly to those for the
other. The remaining two permutations, namely, the body
force acting downward with a cooled plate and the body force
acting upward with a heated plate, would yield flows which
proceed downward or toward the edge of the plate if this
edge were taken at the bottom of the plate. This type of
flow would violate a physical condition of the problem which
states that the flow starts at the plate edge. The latter
combinations hence will not be considered further.

Because the two acceptable configurations can be reduced
essentially to one, for the development to be given here, the
origin of the coordinate system will be taken at the bottom
of a heated plate, with the body force acting downward.
The assumption is now madeé that the viscosity and thermal-
conductivity coefficients are functions of the temperature:
alone and obey the following laws: .
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The choice of the body-force direction together with equa-
tions (5) alters equations (2) and (3) so that they become
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Note that the only nonzero component of the body force is
the X,-component.

BOUNDARY CONDITIONS

The boundary conditions associated Wlth the given prob-
lem are that:

(2) The fluid must adhere to the plate (the no-slip condi-
tion of viscous flows) and the plate must be a streamline,
or mathematically,

- (@®)

(b) The temperature of the fluid at the plate must be equal
to the plate temperature, that is,

Ul (X1,0)= U2 (XI,O) =0

T(X,0)="Ts )

(¢) The velocity U, at large distances from the plate must
be undisturbed, or
Ul(Xl,CD )-——-"0 (10)

(d) The temperature at large distances from the plate
must be equal to the undisturbed fluid temperature, or

T'(X,»)="T. @an

SIMPLIFICATION OF EQUATIONS

Let a small quantity e now be defined as
e=B(To—T=) (12)

which is a measure of the magnitude of temperature variation
in the flow field. The coefficient of volumetric expansion 8
is generally of the order of magnitude between 102 and 10—
(see table 15 of ref. 7, for example) and for gases, f=1/T.
(Thus, for gases, if 8 is taken to be constant, e=(Ty—T)/T=;
that is, ¢ is the relative temperature difference.) The
coefficient 8 will be assumed constant. Because in the
steady state flow ensues only when there is a temperature

321695—65——06
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“variation in the fluid, the free-convection velocity should »

then depend directly on ¢, and the variations in pressure and
density (from the static, =0, case) due to the temperature
differences should also depend on e. Thus

Ui=e ("mpf Xl’> 2 (13)
P=P,—|—P,,eq (14)
P=pstpaco (15)
T=T_(1}¢b) (16)

where —fx denotes the X;-component of the body force per
unit mass, %;, o, ¢, and 6 denote dimensionless functions
(which, in general, can be functions of €), [ is some character-
istic length (for example, the distance from the edge of the
plate to the point of interest), P, and p, are the pressure and
the density, respectively, for the static case (U;=0 or
¢=0), and P. and p. denote constant values of the pressure
and the density (that is, the values if no force field were
present) defined by the state equation (in the case of a gas,
in particular, P.=p-RT.). DBecause there is no character-
istic velocity associated with the type of flow under con-
sideration, the velocity is dimensionalized by the factor
given in parentheses on the right side of equation (13).

In order to determine the static quantities, it will at first
be convenient to consider the particular case of a gas. The
problem is then considered with the temperature uniform
throughout the flow field at the value 7. (therefore there.
will be no flow and U;=0). For this situation, equations
(4b) and (6) become

Pl=leTw (17)
and ’ .
g_§+P:fx=0
' (18)
OP, —0
X, '

(It should be noted that eq. (18) expresses the physical fact
previously stated that the body force and hydrostatic
pressure are in equilibrium for the static case.) Substitution
of equation (17) into equation (18) leads to

)

and equation (19) together with equation (17) and the
equation defining P, and p. yields

(19)

fx
RT,

Ps=p o OXP (—— X1>—pm exp <—Ix—p“’ X) (20)

If the exponential in equation (20) is expressed in terms of
its series expansion, that equation becomes

°ix Xi+.. ) (21)

_ __P
Pi=™Pow (1 P
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A computation of the second term in the parentheses of
equation (21) for the case of air under normal conditions
with fx=g and the fact that X is of the order of magnitude
! show that pogl/P-~10"%/foot. For the type of problem
under consideration, ! will always be of unit order of magni-
tude so that even if the body force fx represents a cen-
trifugal force many times that of gravity, the inequality
pofxX1/Pu<l may still be satisfied. Thus, in the subsequent
development it will be assumed that p,~p.. This assump-
tion, which was justified by the computation for the case of
a gas, is expected to be reasonable for other fluids as well.
The physical interpretation of this assumption is that under
static conditions (e=0), the density (or pressure) is not
affected by the force field.

In order that all quantities in the following equations be
dimensionless, it is further necessary to define z,=X/l,
where the z; are now dimensionless space coordinates. Sub-
stituting these new coordinates along with equations (13) to

. (16) into equations (1), (6), (7), and (4a) and noting equations
(18) and that p,e2p. yield, on neglection of terms of higher
order in e compared with those of order e,

Gr{w g:‘+ — —A'u,l NGr——ga (23) ]
QU y o DU\ _ o NEr 20
6r (1 Szt o ) r,—NGr 22 (24)
— Y
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where P./psfcl=NGr and the Grashof number Gr and the
Prandtl number Pr are defined as

2.
Gr=L=JX* “’#f ‘§PE

and

Colt
Pr=2—=
ke

Physically speaking, the Grashof number represents the
ratio of the body forces to the viscous forces. The free-
convection flows of interest here are those associated with
large Grashof numbers. The factors K and 8 in equation
(26) may well be taken to be constants (see ref. 6).

The boundary conditions (egs. (8) to (11)) in terms of the
new dimensionless variables are

Uy (21,0) =u(21,0) =0 @7

0(9:1,0)— (28)

BT

Uy (%1, ) =0 (29)

8(331)00):0 (30)
Thus, to a first approximation, equations (22) to (26) to-
gether with the boundary conditions replace the original
equations and boundary conditions. (Note that for gases,
BT.=1.)

The prime assumption made in this analysis is that the
higher-order terms in e are negligible, which implies that e
is small, and consequently, that the temperature difference
or 8 is moderately small. It isa consequence of this assump-
tion alone that the basic equations were sumphﬁed to equa-
tions (22) to (26). wherein the viscosity term in the energy
equation is neglected and the only coupling of the momentum
and energy equations occurs by means of the body-force
term in equation (23). As a result of this assumption, the
variations of the viscosity and heat-conductivity coefficients
with temperature are also negligible. Without any discus-
sion, the authors of reference 2 start directly from simplified
equations of the same form wherein the pressure terms in the
energy equation were also neglected In reference 3 some
intuitive arguments are given to justify the simplified
equations.

It isnow convenient to revert to the more familiar notation
where z=1,, y=13, u=1%, and 9=v;. Equation (22) implies
the existence of a stream function ¥ such that

and

(31)

where subscripts denote differentiation. Applying equation
(31) to equations (23) to (25) yields, respectively,

7= ¥y — =ddey— bl + N (32)
= (A= — bt b+ Ny (33)
N a;lp—r (A0)=B!’ﬂez_§!’z9v_‘_l‘]‘_ (Yyor—1uo, ﬂ) (34)
The boundary conditions (egs. (27) to (30)) become
¥y (2,0)=1=(2,0)=0 (35)
1
g ($;0)=B—T: (36)
(37

¥y (2, )=0(z,=)=0

Equa.tions<(32) to (34) and equation (26) form the system
of equations for the four unknown functions ¢, 0, ¢, and ¢
of the problem. The system is nonlinear, and therefore



FREE-CONVECTION FLOW AND HBEAT TRANSFER ABOUT A FLAT PLATH 67

further simplification of the equations would be desirable.
Just as in the case of forced-convection flows where the
Reynolds number determines the type of flow or, in mathe-
matical terms, the type of solution, the Grashof number is
the prime factor for free-convection flows. For the case of
small Grashof number, it can be seen from equations (32)
to (34) that a perturbation in the small parameter Gr will
yield a system of linear equations. For Grashof numbers
of unit order of magnitude, no further important simplifica-
tion can be made and the solutions would have to be obtained
numerically. For the other limiting case, that of large
Grashof numbers (which is- the case under consideration
herein), it would, at first thought, appear that some simpli-
fication could be obtained by performing a perturbation in
the small parameter 1/Gr. However, this would then
imply that the term containing the highest-order derivatives
(the left term in equations (32) to (34)) could, among others,
be neglected. (This argument would also imply that the
body-force term ¢ in equation (32), which is essentially,
causing the flow, could also be neglected.) The omission
of the highest-order derivatives from consideration, however,
would lead to solutions which would not satisfy all the
boundary conditions. Problems of this type are referred
to as singular perturbation problems. For further dis-
" cussions of singular perturbation problems, see references
8 and 9.

Equations in which a small parameter multiplies the
highest-order terms are said to be of the boundary-layer
type, because in order for solutions which satisfy all the
boundary conditions to be obtained, the highest-order terms
must be considered near the boundary. This fact implies
the existence of a thin region, called the boundary layer,
wherein the functions vary rapidly from the value at the
boundary to that in the flow outside this layer. The con-
clusion to be drawn from the preceding discussion is that
for large Grashof numbers the flow is of the boundary-
layer type. Schmidt and Beckmann (ref. 2) also made
the boundary-layer assumptions in their theoretical develop-
ment, and these assumptions were justified on the basis of
their experimental observations. The Grashof numbers for
their experiments were of the order of 8X10°.

In view of the fact, previously discussed, that highest-
order derivatives of each dependent variable as well as of
those terms of physical importance (as, for example, the
body-force term) must be retained in the boundary layer, it
is convenient to make both sides of each of the equations
of the same order in Gr. In this way, as will be shown, the
equations will be further simplified. It is thus convenient
to make the following transformations in the system of
equations (32) to (34) and (26) and then to retain only the
dominant parts (that is, those multiplied by Gr to the
highest power) of each individual term.

Let §=Gry, y=@ry, o=Gr'c, o=7, and 0=6.
equations (32) to (34) and (26) become

Then

G- — im0y (i~ TG A NG, (88)
— QPN e G (— Y+ BB F NG T (39)

@rrr-i - oo - o
Pr Se=Ort =R~y Gt (m— ) (40)

dpo=KP _ Gr'de—8T.d6 (41)
It now can be seen that by proper choice of r, g, and ¢ a
transformation of the type given provides & means for
making the important terms in the differential equations of
the same order in Gr. Thus if r=}, s=—¥%, and {=—1,
equations (38) to (41) become

Vim— o=V — ¥+ NG, (42)
LA

N&=0 (Gr"ﬁ)go (43)

O7=Pr (40— ¥.65) (44)

do+8T.d6=0 45)

More generally, if V is very much different from unit order
of magnitude, & value of ¢ can always be chosen (depending
on N) such that equations (42) to (45) are obtained. (For
any negative ¢ less than —1, the last term of eq. (42)
will also disappear.) i

There are now several important points to be discussed
concerning the transformation just made and the resulting
simplified equations. First, it should be noted that the
transformation is merely & formal expression of the bound-
ary-layer assumptions first made by Prandtl and hence the
solutions will be asymptotic for large Gr. Second, the
second equation of motion here also reduces to state that
the pressure across the boundary layer is constant. Third,
the pressure terms in the energy and state equations are
here found to be negligible. This fact verifies a priori
assumptions made by others from the physics of the problem.
Finally, note that integration of the general state equation
(independent of pressure) as now given by equation (45)
leads to

’ o+B8T-6=0 (48)
where the constant of integration has been taken as zero
without any loss of generality. For the particular case of
a gas, B=1/T, so that equation (46) becomes

7+6=0

The boundary conditions (eqs. (35) to (37)) now can be
written

. ¥%(2,00=¥,(2,0)=0 (47)
- 1
J;(ﬂ?, °°)=b-(m: °°)=0 (49)

If now it is assumed that 7,=0 in equation (42) since con-
sideration is here being given to a flat plate, and if & is
eliminated from equation (42) by use of equation (46),
there results the system of equations
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VBT =Tl V¥ (50)
8z=Pr (35— LE) (51)

Thus the problem has been reduced to the solution of the
two simultaneous partial differential equations (egs. (50) and
(51)) subject to the boundary conditions (eqs. (47) to (49)).

Final simplification of the equations is made by applica-
tion of the so-called similarity transformation of boundary-
layer theory. Thus, let

<A

1=—" (52)
(42)
and
I=(42) F(a) (53)
= H(n)
0‘5—'1% (54)

Then equations (50) and (51) are reduced to the following
ordinary differential equations:

B L 3FF —2F" - H=0 (55)

' +2Pr FH =0 ' (56)

where the primes denote differentiations with respect to 7.
The reciprocal one-fourth power similarity as given In equa-
tion (52) is characteristic of free-convection flows just as the
reciprocal square-root type is characteristic of the forced-
convection flows. The boundary conditions become

-F'(0)=F(0)=0 (57)
H()=1 (58)
F'(=)=H(=)=0 (59)

The use of a transformation like equation (52) essentially
specifies an additional boundary condition, namely, that the
conditions to be satisfied at y= « (or 3= =) should also be
satisfied at x=0. It is for this reason that the flows pre-
viously discussed which would flow toward the edge (down-
ward) are not amenable to this type of analysis, for such flows
would violate this additional condition, which essentially
states that the boundary-layer development starts at the
- edge of the plate.

SOLUTION OF THE BOUNDARY-VALUE FROBLEM

The solutions of the simplified equations (55) and (56), "

satisfying the boundary conditions as given by equations
(57) to (59), were obtained by use of an IBM Card-Pro-
grammed Electronic Calculator. A detailed account of the
procedure followed in the determination of the unknown
functions is presented in appendix B by Dr. Lynn U. Albers.
The functions F' and H together with their derivatives are
given in table I for Prandtl numbers of 0.01, 0.72, 0.733, 1, 2,
10, 100, and 1000. Even though the Prandtl number for air
is taken as 0.72 in this report, the solutions for Pr=0.733
were also computed and are presented as a check with the

Schmidt-Beckmann caleulations wherein the value of Prandtl
number of 0.733 was used. The particular values of the
Prandtl numbers given were chosen to correspond to those
for liquid metals, gases, liquids (such as water and oil), and
very viscous liquids (such as glycerin or oils at very low
temperatures). \ ‘
RESULTS
VELOCITY AND TEMPERATURE DISTRIBUTIONS

By means of the various transformations made in the
analysis it can easily be verified that

UX
U
2VB(T—T)/xX 21/@— =F'(n) (60)
and '
(61)
where
e o °)ﬁ] (Gﬁ) % (62)

Equations (60) to (62) relate the physical quantities to the
dimensionless functions F and H which are now known.
The dimensionless velocity and temperature distributions as
given by equations (60) and (61) are presented in figures 1
and 2, respectively, as functions of 5 for the various values
of Prandtl number. The computations made here agree
with those for Pr=0.733 as given in reference 2 up to the
third significant figure. For Pr=10, 100, and 1000, the
present results agree in general with those of reference 3.
Since only curves are presented in reference 3, the precision.
of the agreement cannot be stated.

The maximum values of the dimensionless velocity dis-
tributions occur at larger values of the argument n as the
Prandtl number decreases and the velocities decrease with
increasing Pr. It should also be noted that the dynamic
and thermal boundary-layer thicknesses can be estimated
from the abscissas of figures 1 and 2, respectively, and thatl
for Pr>>1 the velocity boundary layer is much thicker than
the thermal boundary layer.

The occurrence of fx (or Grx as given by eq. (60)), which
may be very large for flows generated by centrifugal forces,
in the denominator of the ordinate implies that velocities of
appreciable magnitude can be associated with such free-
convection flows. In particular, if fx=10° feet per second
squared, which is a reasonable conservative figure for pres-
ent-day rotating systems, e=0.2 (which is within the limits
cf the theory presented herein), and arbitrarily X=0.25
foot, then the maximum velocity attained at a Prandtl
number of 0.72 is approximately 126 feet per second. This
value of the maximum velocity could, of course, be doubled
or even tripled under the proper conditions. One limitation
to a calculation of this sort, as can be seen by comparison of
the denominators of the left and middle terms of equation
(60), should be kept in mind; namely, the limiting Grashof
number for laminar flows. In lieu of a complete stability
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analysis on this type of flow, this limiting value is taken to be
10°, as indicated in reference 10. Consideration of this lim-
itation then .implies (see eq. (60)) that for large laminar
velocities either », must be large or X must be small.

COMPARISON WITH EXPERIMENTS

Careful experiments of free-convection flows (as generated
by gravitatipnal forces) about vertical flat plates were made
by Schmidt and Beckmann (ref. 2) in which velocity measure-
ments &t various points along the plate were made by means
of o quartz-filament anemometer and the temperature meas-
urements were obtained by means of manganese-constantan
thermocouples. Eckert (ref. 1) performed similar experi-
ments in which the measurements were made by means of a
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Fioure 1.—Dimenstonless veloelty distributions for various Prandtl numbers.

Zehnder-Mach interferometer. The results of both sets of -
experiments are in good agreement, but since the data pre-
sented in reference 2 by Schmidt and Beckmann appear in
more detail, these data will be used for comparison. with the
theory. -

The experiments of reference 2 were performed on two
different (in that the edges were smoothed either symmetri-
cally or not) 12- by 25-centimeter plates and on one 50- by
50-centimeter plate. It should here be pointed out that the
results for the two smaller plates were almost identical and
that the flow was entirely laminar except near the outer
edge of the boundary layer where the slight turbulence of
the room air disturbed the measurements somewhat. (This
effect, was also observed by Eckert.) Large periodic oscilla-
tions of the flow near the downstream edge of the larger plate
were observed in addition to the slight turbulence near the
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FI1GURE 2.—Dimensionless temperature distributions for varions Prandt! numbers.
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outer edge of the boundary layer. Hence the data from the
larger plate should not be expected to yield completely satis-
factory agreement with the laminar theory as presented
here.

Since the physical quantities can be expressed in terms of
a single variable as in equations (60) and (61), it is to be ex-
pected that the data taken at the various points along the
plates should all lie on a single line if the data are correlated
according to equations (60) and (61). Thus for the smaller
plates where (Ip-7.)=95.22° R and T.,=518.68° R, equa-
tions (60) to (62) become

U
A 63
4.862VX () €3)
T—518.68
“95.02 — L (64)
Y
17=88.26E}- (65)

The velocity and temperature distributions are so plotted in
figures 3 and. 4, respectively, as are the curves computed
theoretically for Pr=0.72. It can be seen that the agreement
is in general very good for small values of  and somewhat
less satisfactory though still rather good for the larger values
of 5. The scatter in the range of the larger values of 5 is
believed to be caused by the previously discussed room
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turbulence. It should also be noted that the points farthest
away from the theoretical are those measured near the
leading edge. These points should not, of course, be expected
to agree- too well with the theory since the boundary-layer
assumptions made in the theoretical development imply that
the distance along the plate is large as compared with the
‘boundary-layer thickness. Hence, this assumption is invalid
near the leading edge. Schmidt and Beckmann obtained
closer agreement between the theory and the experiments for
the temperature date and poorer agreement for the velocity
data by basing the kinematic viscosity coefficient in equation
(62) on the plate temperature rather than on the undisturbed
stream temperature as was done here.

For the larger plate, (Ty— T.)=83.7° R and T.=527.14°
R, so that equations (60) to (62) become

U
Y 66
1s2oyx L) (66)
T—527.14
37 ——H() (67)
n=83.93% 68)
X .

The velocity and temperature distributions for this experi-
ment are plotted in figures 5 and 6, respectively, and again
the theoretical curves for Pr=0.72 are included. In figure 5 it
can be seen that for large » the agreement is rather poor,
particularly for the data for both small and large values of X.
The poor agreement for small values of X is again due to the
theory limitation near the edge of the plate and for large
values of X, to the fact that the flow was becoming turbulent
“there.
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FLOW AND HEAT-TRANSFER PARAMETERS

In addition to the velocity and temperature distributions,
it is often desirable to compute other physically important
quantities (such as shear stress, drag, heat-transfer rate, and
heat-transfer coefficient) associated with the free-convection
flow. To this end, two parameters, a flow parameter and a
heat-transfer parameter, are derived in appendixes C and D,
respectively.

The flow parameter

=F"(0)

(4Gr (v 10/ XD

is presented as a function of Prandtl number in figure 7.
Thus, the various flow quantities for a given set of conditions
can easily be computed by application of figure 7.

The local heat-transfer parameter

Nu

X ——HY(0)

(@rx/9)*

as determined here is given as a function of Prandtl number
in figure 8. A calculation of the local Nusselt number from
this equation for Pr=0.72 and Grx=10° yields a value of
63.5, which indicates that large heat-transfer coefficients can
also be obtained with free-convection flows.
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On the basis of a simplified theory (that is, by use of
integrated momentum and energy equations and assumed
velocity and temperature distributions), Eckert (see p. 162
of ref. 7) obtained the approximate relation

Nu 0.718(Pr)
(Grs/0)t (0.952+Pr)
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The curve representing this equation is also presented in
figure 8, and it closely approximates (to within about 10
percent) the curve determined by the more exact considera-
tions of this report over the entire Prandtl number range. A
semiempirical equation as given in reference 11 relating the
average (over the length X) NusSelt number to the Prandtl
and Grashof numbers which has been used in the heat-
transfer calculations up to the present is

Ntp=0.548 [(Pr)Gr]}

The constant 0.548 pertains specifically to air; for oil it
should be 0.555 (see ref. 12) and for mercury, approximately
0.33 (see ref. 13). In order to obtain local values from the
average ones given by the last equation, it is merely necessary
to multiply the average values by 0.75. (The determination
of this reduction factor of 0.75 is discussed in appendix D.)
Thus in terms of the local quantities the semiempirical
relation becomes

Nu=0.411 [(Pr)er]*
or
Nu

——2——0.581 Prt

(Gr=/4)
The curve given by this equation is also presented in figure
8 and the agreement with the theoretical curve is very good
for Prandtl numbers near unity, not so good for large Prandtl
numbers, and very poor for the small Prandtl numbers. Of
course, changes of the constants in the semiempirical relation
as previously discussed for the large or small Prandtl number
cases (oil and mercury, respectively, for example) would
cause the semiempirical curve to approximate the theoretical
curve more closely. The values of the heat-transfer param-
eter obtained experimentally for mercury (Pr=0.03), air
(Pr=0.72), water (Pr=7), and oil (Pr==75.5, 115, 190, 224,
275, 318, 368, and 442) are here reduced by the factor 0.75
from the average values reported. The value for mercury
is an average taken of four readings from a curve, since this
experiment was the only one not reported in tabular form.
From figure 8 it can be seen that all of the experimental
values except those for the oil experiments are in very good
agreement with the theoretically computed values. The

data from the oil experiments, though not so good, show
reasonable agreement (maximum error of approximately 20
percent) with the theoretical curve and good agreement, as
is to be expected, with the semiempirical curve. The differ-
ence between the theoretical values and the oil experiment
results can possibly be due to the fact that the viscosity
changes in oil are large even for small temperature differences
or due to the end effects in the measurements.

CONCLUSIONS

An analysis was made of the free-convection flow about a
flat plate oriented in a direction parallel to that of the
generating body force under the prime assumption that the
relative temperature difference is small. It was found that
the Grashof number was the principal factor determining
the type of flow and that for large Grashof numbers the flow
was of the boundary-layer type. The theoretical develop-
ment was then continued to consider only the cases of large
Grashof number because these are of most importance in
aeronaufics.

Velocity and temperature profiles for Prandtl numbers of
0.01, 0.72, 0.733, 1, 2, 10, 100, and 1000 were computed on
the basis of a constant body force and plate temperature
and agreement with experiments where the fluid was air.
(Prandtl number of 0.72) was good. It was also demon-
strated that velocities and Nusselt numbers of the order of
magnitude of those obtained in forced-convection could be
obtained in free-convection flows.

A flow parameter and a heat-transfer parameter which are
functions of the Prandtl number alone were derived. Calcu-
lations of the important physical quantities such as shear
stress, heat-transfer rate, and the like can be computed from
these parameters. Values of the heat-transfer parameter
obtained from an approximate theoretical development and
from experiments compared with values computed from the
present development showed good agreement over a wido
range of Prandtl number (0.01 to 1000). It is shown that
the commonly used semiempirical relation  for the heat-
transfer coefficient will yield good results only in restricted
Prandtl number ranges.

Lewis Fricer PropuLsioN LABORATORY
NaTroNAL ADvisory COMMITTEE FOR AERONAUTICS
CreveLanD, OH10, October 3, 1951

APPENDIX A
SYMBOLS
The following nota.'tion is. usged in thls rel.)ort:‘ N | e Grashof number, 2 w2/ ;lj
Ay™, B,®,  coefficients in numerical differentiation and Mo
o™ D, integration formulas Grx Gras'hof 'number based on X
. g gravitational force per unit mass (or accelera-

Cp specifiec heat at constant pressure o .

pecific . : ion duc to gravity)
F dimensionless velocity function H dimensionless temperature function
14 components of body force per unit mass, b heat-transfer coefficient

1=1,2,3 - K isothermal compressibility coefficient,

Ix negative of X-component of body force per _ [b (1/0)

unit mass P oP |



FREE-CONVECTION FLOW AND HEAT

k thermal-conductivity coefficient

l characteristic length

m, n arbitrary exponents

N % number, defined following equation (26)

Nu Nusselt number, hX/k

Nug, average Nusselt number

P pressure

Pr Prandtl number

yi4 gas constant

r,8,t arbitrary exponents

r absolute temperature

U, velocity components, 1=1, 2, 3

o dimensionless velocity components, =1, 2, 3

% dimensionless velocity component in :c-dn'ec-

tion

v dimensionless velocity component in y-direc-
, tion

Xy Cartesian coordinates, =1, 2, 3

2y dimensionless Cartesian coordinates, =1, 2, 3

z dimensionless Cartesian coordinate

Y Cartesian coordinate

y dimensionless Cartesian coordinate

=]
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B coefficient of volumetric expansion,

[b (1/p)

ratio of specific heats

Laplacian operator

relative temperature difference, 8(Tov— T',,)
similarity variable

dimensionless temperature function
step size used in numerical calculations
absolute viscosity

kinematic viscosity

density

dimensionless pressure function

shear stress

dimensionless density function

stream function

€§ 19D YE AR DI A
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¢
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Cartesien tensor and summatjon subscripts
denotes evaluation at static conditions (e=0)
denotes evaluation at plate surface

o denotes evaluation at undisturbed conditions
Subscript notation is used to denote partial differentiation.
Superscripts:

Primes denote ordinary differentiation.

Bars (as o or %) denote transformed dimensionless quantities.

o &
o,

APPENDIX B

NUMERICAL SOLUTION OF SIMPLIFIED BOUNDARY-YALUE PROBLEM
By Lynn U. ALBERS

The method is presented herein by Whlch solutions to the
boundary-value problem

F'" - 3FF —2F"2+ H=0 B1)

H''+43PrFH'=0 (B2)

F@)=F'"(0)=0 H(0)=1

F(0)=H(=)=0

wore obtained for the cases of Pr equal to 0.01, 0.72, 0.733,
1, 2, 10, 100, and 1000. This discussion will enable the
results to be clearly evaluated and will perhaps serve as a
guide in the numerical solution of similar problems.

Each of the cases of the problem has a solution for a
particular set of values for ¥’/(0) and H’(0), hereinafter
called eigenvalues. The basic approach to the problem was
to estimate the eigenvalues and to integrate out from zero,
obtaining functions which satisfied equations (B1) and (B2)
at each step. The mtegra,tlon was continued until the func-
tions F” and H behaved in a fashion inconsistent with the
boundary values at infinity; for example, when they became
negative or diverged to infinity. Improved estimates of the
eigenvalues were then made on the basis of the results of
preceding runs and the process was repeated successively
until a solution was obtained.

Modifications required to overcome specific obstacles will
be discussed after sufficient details of the basic procedure
have been given. Then an evaluation of the accuracy of the
numerical results will be made.

The integration process consists of two parts, a starting
phase and an extension phase. The starting phase begins
with an estimate of the eigenvalues F7/(0) and H’(0) and a
decision. on the step size « to be used. It continues with an
iterative process of alternately computing #/// and H'' at
the first four points and integrating them by five-point
formulas. This process and that in the extension phases
are so arranged that the differential equations are satisfied
at each integral multiple of the step size.

The extension phase used preceding data to integrate step
by step beyond the fourth point. Diagrams of both phases
will be given after a few preliminary explanations.

All integration formulas used are based on the same idea.
Ifafunctlon,for example, F//,isknown at five points, there is
a unique fourth-degree polynon:ual which agrees with it at
these five points. Moreover, if the successive antideriva-
tives (integrals) F'/, F’, and I' of F’" are known at one
point, there are unique fifth-, sixth-, and seventh-degree
polynomisls which are successive antiderivatives of this
fourth-degree polynomial ahd which agree with F*/, F”, and
F, respectively, at the one point. It is then a simple algebra
problem to deduce from the values of F/// at five points and
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F, F’, and F’’ at a single point the values of any of these
four polynomials at any point. These results will approxi-
mate the functions F, F/, F'/, and F’’’ to a degree dependent
on step size, the relative positions of the points in question,
and the magnitude of the fifth derivative of #/// in -the
neighborhood of these points.

The preceding algebra problem can be presolved in all
situations that arise in the starting and extension phases of
the present problem and specific integration formulas may
be deduced. These formulas are discussed in the next
paragraph.

Let F’”’ be denoted at five successive points by Fy'/,
F, B Ry, and F/'’. In the starting phase, these
points are 0, x, 2x, 3x, and 4x, and F;, Fy', and Fy'’ are also
known. Then the five sets of formulas required in the start-
ing phase are.

4
F{”=F0"+D':(D EAU(DF/" 1=1, 2, 3, 4 (B3)

- ) 4
H/=H/+3 5 2 A4®H/’ i=1,2,3,4 (BY)

4
Fi,=F°’+7:"F°”+DKi(2) EA”&)};!/H

- : ‘
H,=Ho+imHo'+D"—im §A:;mH;” i=1,2, 3,4 (B6)

zx’

Fi=Fy+4ixFy 4

FDII 4

1 Dt Z Aijm-Fj,,,

i=1,2, 3,4 (B7)
where the superseripts on the Ay™ and D, refer to the
order of integration.

The constants 4,4 and D, may be read from the fol-
lowing tables: ’

For A,;® and D,

A7)
D)
N oo 1 a 3 4
1 251 | 16 [ —26¢ | 108 | —10 | 720
a 2 | 121 24 + | =1 90
3 7 | 102 72 al —3 &
1 14 64 24 4 14 5
For Aua) and D{m)l
Ag®
Di()
N oo 1 2 3 4
1 367 | b0 | —282 | wme [ —2 | 1410
2 53 | 144 | —30 6 | —3 %0
3 aa1 | 1401 | 162 | 10 | —w | a0
1 % | 102 18 0 45

1=1, 2, 3, 4 (B5) -

For A,4® and D,®:

Ag®
D)
N | oo 1 2 3 4
1 {1017 | 100 |—e18 | 288 | —47 | 10080
2 331 | 684 |—240 | 104 | —10 | e30
3 | 1431 | aree | —ass | 40 | —81 | 1120
1 744 | 2178 o | 384 | —40 | 315

It is now possible to diagram the steps of the starting phase
of the integration. If each bar above a function denotes an
improved estimate of it, and the first estimates of Fy///, F,'"/,
Fy"’, and FY'" are all equal to Fy/’, and similarly for the
H’’, then the starting phase diagrams are

(1) (Fo, Fol’ F’o”, FOIH; Fl’", Fg'", Fs"', F‘III)__>F1, -Fl,, Fl“
(This diagram means that the values in parentheses are
used with appropriate integration formulas from (B3) to
(B7) to obtain F, F’, and F’’ at n=«.)

(2) (HO; Hol’ Hi)", Hl", RHL_Hsl,g__Hlx”)_)Hl: H‘ll

(@) (B B, By, Hy, H')=F"", Hy"

(The preceding diagram means that the values in parentheses
are substituted in the differential equations (B1) and (B2)
to obtain F”// and H'' at n=«.)

(4) (Fo, Fo ;Fo”, Fo’” 'FH// Fg/li F/II F4"’)—>Fg, F’ ,]'1’;'

(6) (Hy, Hy, Hy’, Hy", Hy’, H3"’, H/')—’Hz; Hy

(6) (Fy, FyY, ', Hy, Hy')—Fy'", Hy'

(7) (FO; FO’: FOII’ FOIII’ F1",, Fz”’, .F;;"’, F4”’)~>F3, F!al’ FSH

(8) (Hy, Hy', Hy”, Hy"", Hy"", Hy'", H{")~Hj, Hy

(9) (Fs, By, Fy'’, Hs, Hy)—>Fy'"’, Hy’

(10) (FO, Fol’ FOII’FOIII F 1244 Fﬁ,,, F 777 F///)_)F‘, F‘ ,F4“

(11) (Hy, Hy', Hy'', Hy'', Hy' : H;")—>H4, HY

(12) (FA, F‘/’ F4fl’ H() F‘I)_>F‘III H 17

It may be noted here that all four values of #// and H"’
have been improved, and further improvement will require
iteration of steps 1 to 12. The start of the second iteration

" is diagrammed as follows

(13) (Fo, Fy' ’FDII’FOIII T,/ F 1 F 117 74"')—>F1,F1 ’FI//
(14) (HOJ HO 3 H;f),,y HZHJ Hsl', Hlll)-zgly Hl

(15) (F,, Fy, Fy", Hl; El )—>F1"' bz A

(16) (Fo,Fo ,Fo";Fo"' Fl"' F ", Fl’”)’—:’FZ:FR s’

Successive sets of 12 steps are performed until the values of
Fy”’" and H{’ no longer change.

On. the IBM Card-Programmed Electronic Calculator, a
deck of punched cards 2 inches thick sufficed to perform steps
1 to 12. Three runs of this starter deck at 3 minutes per
run accomplished complete convergence in most cases. At
the end of the starting process there have been computed and
stored Fy, F,/, F/’, H,, and H/, and final estimates of I’’/,
Fglll’ Falll’ F4II/’ H'lll’ H‘all, Hall, &nd H‘l/. ’
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The extension phase has now been reached. It used a
different set of integration formulas based on the same gen-
eral ideas as equations (B3) to (B7). If &/, B/, ',
Iy, and F//’ now designate F’// at any five successive
points, and the subscript 5 denotes the next point,

FU'=F{'"+ g 33 BOF” (®8)
. 4 "
H{=H/+gm 23 BCH/ (B9)
4
—Fi+ P g S BOF (B0
4
Bi=Ho o+ gy 23 BB ®11)
’ 2 ’” B8 & @ Prer
Fy=F,+«Fy +§ Fy +0—m§ B®F (B12)

where the Bf® and C'™ are given in the following table:

Byta)

251 —1374 | 2016 | —2774 | 1901 70
1446 | —1598 | 1427 1440
410 | —2116 | 4476 | —5084 | 5674 | 20160

@
8
|
8

The extension phase may then be diagrammed simply as
follows:

(1) (F4; F4I’ F4", Foll/, F1,”, leu, Falll, 4"')—>F5, FEI’ FE”

) H, H!,H, Hy", Hy", H', H/')—>H;, Hy

(3) (Fa, Fﬂl, Fsll’ Hs, Hs’)—I’Fsl", H5,,

The values of the functions at the next point are computed
in similar manner, where the latest sets of five values of

F’ and H’' are used. This process advances step by step

toward infinity.

The extended deck of punched cards was about 3 inches
thick and took a little over 3 minutes perrun. For Pr=0.72,
a step size of 0.1 was used, the starting phase took 10 minutes,
and the extension phase, about 80 minutes. When it is
realized that about 11,000 operations were performed in the
40 minutes per run, it may be seen that solution of the
present problem would have been prohibitively difficult on
desk-type calculators. Simplifications in method would have
sacrificed accuracy or required smaller step size.

In two-point boundary-value problems where one point is
infinity, some problems of judgment are irivolved as to where
infinity is, and as to when a satisfactory approximation to a
solution has been obtained. Ih most cases this question was
settled for the present problem by calling a run satisfactory
when it fell between two runs for which F and H did not
differ at important points in the fourth decimal place, and

for which F” and H flattened out at zero, correct to four
decimal places.

Certain difficulties were met in the attempt to use the
basic procedure previously discussed. These necessitated
certain modifications.

For Pr=2, 10, 100, and 1000, H would settle down to
zero at an early stage; but while F” was still coming down,
H’’ would begin to oscillate and these oscillations increased
and fed back into all other functions. This trouble was
avoided by the following modifications: It is & consequence
of equation (B2) that

B (n)=F(0) exp (—3Pr J; "F(t)dt)
—H(7—x) exp <—3Pr J:_‘F(t)dt B13)

The extension phase was modiﬁed to require the additional

- integration formulas
7
ﬂ_‘F(t)dt 720 EA,F, B14)
5
H5=H4."l‘7%'6 g AiHi, (B15)

where A,=—19, A;=108, A;=—264, A,=646, and A;—251.

These formulas were used along with equations (B8) to
(B10) according to the following diagram:

(1) (Fb F;', F4", FOIII, FIIII’ Fz'”, Fs'”, F(")'—)Fg, Fsl’ F5"

- (2) (I, Fy, F;, Fy, Fy, H)—>H' by means of (B14) and

(B13)

(3) (Hlly Hﬁ,: H3,; Hl,: H5I;

(4) (Fs, B, Fy/', H)—>Fy"’

The value Fy'’/ is discarded and F/// at the last five points
is used to repeat the whole process again and again ad
infinitum. As long as F stays positive, H’ is guaranteed to
approach zero and H will flatten out to some value and not
oscillate.

For Pr=0.01, 0.72, 0.733, and 1, the 77’/ began to oscillate
at an advanced point and these oscillations grew and fed into
the other functions. For all cases but Pr=0.01, the oscilla-~

H)—H; by means of (B15)

.tions appeared very late, near the end of the run, and a

suitable halving of step size when oscillation was detected
in the fourth differences of #//’ was sufficient to avoid the
difficulty. But for the 0.01 case, oscillations of F/// appeared
early in the run, namely, soon after the peak in F. These
oscillations were found to be step-size connected, so that
reduction of the step to 0.02 avoided them. XEven then
oscillations in 7/ would begin to appear every 25 steps or
8o, and these were smoothed out regularly by repeated rung
of a deck similar to the starter deck. Each run under these
conditions took about 16 hours, ma.kmg this the most diffi-
cult case to solve.
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APPENDIX C
DERIVATION OF FLOW PARAMETER

By definition the shear stress is given by

oU
)

To express QU Y), in terms of the known function F(z),
use can be made of equations (60) and (62). Then

(C1)

BU =4 era) X%

Substitution of this expression into equation (C1) yields the
flow parameter

T =F""(0)
(4G (ol X

Note that from the general derivation, the flow parameter
contains the viscosity evaluated at two different points.
Recall, however, that the analysis has shown that to a first
approximation the variation of viscosity with temperature
can be neglected. Thus the viscosity can be taken as
constant in the entire flow field.

APPENDIX D
DERIVATION OF HEAT-TRANSFER PARAMETER

The local Nusselt number is defined as

=)

To express @TRY), in terms of the known function H(n),
use is made of equations (61) and (62). Thus

OT_(To—T.) (er> )

D1

" of this parameter.

The heat-transfer parameter as given by equation (D2)
is, as was previously stated, a local parameter. It is often
desired to compute the average (over the length X) value
To this end, the Nusselt number (as
given in equation (D1)) must be defined in terms of an
average heat-transfer coefficient and the quantity thus ob-
tained must then be integrated over the length X and
divided by X. This procedure yields the result

Substitution of this expression mto equation (D1) yields N"u—é (N,
the heat-transfer parameter T4 o
N , . . . .
—u—;='—H (0) (D2) | It is from this last equation that the 0.75 reduction factor
(Grx/4) previously discussed was obtained.
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FREE-CONVECTION FLOW AND HBEAT TRANSFER ABOUT A FLAT PLATE

TABLE I.—FUNCTIONS F AND H AND DERIVATIVES FOR VARIOUS PRANDTL NUMBERS
(a) Prandtl number, 0.01

n F F Sl H b2 7 F b od F H "
0 (. G000 0. 0000 0.9862 | 1.0000 | —0.0812 4.18 1. 6319
.1 . 0048 . 0938 . 8868 . 9019 —. 0812 4.18 1. 9400
.2 .0184 1774 . 7801 . 8838 — 0812 4.20 1. 8480
.3 . 0399 .2518 . 6042 . 9756 - 4.24 1. 9640
.4 L0684 .3164 . 6030 . 9675 —. 0811 4.28 1.9709
.8 L1029 .3723 .5163 . 9504 —. 0811 4.32 1. 6957
.8 L1428 . 4188 . 4849 . 9513 —. 0811 4.38 2.0114
.7 . 1866 4595 . 3585 . 0432 —. 0811 4.40 2.0270
.8 2342 .4919 . 2008 . 8351 —. 0810 4.50 2.0657
.9 . 2848 L5178 2285 . —_ 4.60 2.1037
1.0 .3376 . 5379 L1734 9189 —. 08300 4.7 2.1411
1.1 .83923 . 5527 .1253 .9108 —, 0808 4.80 2.1780
1.2 . 4480 . 5631 . 0839 . - 4.90 2.2143
1,3 . 5047 . 5697 . 0489 8847 —. 0808 5.00 2. 2501
L4 . 5618 . 5731 . 0198 . 8866 — 510 2. 2853
1.5 .6192 . 5739 —. 0039 . 8788 —. 0803 520 2.3200
1.6 . 6765 .5725 — . 8708 —. 0801 5.40 2. 3877
L7 . 7338 . 6604 —. 0378 . 8628 —. 0800 5. 60 2. 4534
1.8 . 7804 . 5650 —. 0493 .8548 - 5.80 2.5170
L9 . 8468 . 5598 —. 0579 . 8468 —. 0796 6.00 2. 5787
2.0 . 0023 . 5535 —. 0641 L8387 -_ 8.20 2. 6384
21 . 9573 . 5469 - <8307 —. 0792 6.40 2. 6963
2.2 1.0117 . 5300 —. 0714 8228 —_ 6.60 2. 7524 3
2.3 10653 . 5328 —. 07 . 8150 —. 0787 .80 2. 8067 .
2.4 1.1182 L5253 —. 0742 L8071 —_ 7.00 2.8593 3
2.5 1.1703 . 5178 —. 0746 LT3 —. 0783 7.40 29504 .
2.6 1.2217 . 5104 —. 0745 . 7016 - 7.80 3.0532 - .
2.7 1.2724 . —. 0741 . 7837 —_ 8.20 3.1411 3 .
2.8 1.3223 . 4056 —. 0735 . 7760 —. 0773 8 60 3.2232 - .
2.9 1.3715 . —. 0728 . 7682 —. 0770 9.00 3.2099 1853 —. 0318 .3709 —_
3.0 1.4200 .4810 —. 0719 . 7608 —. 0788 9.40 3.3716 1720 -—. 0302 . 3607 —. 0470
31 1. 4677 4739 —. 0711 . 7520 —. 0763 9.80 3.4383 .1812 —. 0285 L3423 —. 0451
3.2 1, 5148 . —. 0701 L7453 —. 0760 10.20 3. 5005 .1501 —. 0270 .3248 -
3.3 1, 5611 . 4508 - . —. 0758 10.680 3. 5684 . 1398 —. 0254 . 3089 —. 0413
3.4 1. 6067 .4530 —. 0683 . 7302 -—. 0753 11.00 3.6128 . —. 0241 .2015 -
3.45 1. 6203 L4406 —. 00678 . —. 0781 11.40 3. 6622 . —. 0228 . 2759 -
.5 1.8517 L4462 —. 0074 . —. 0749 11.80 3.7086 L1114 —. 0215 . 2610 —. 0384
3.56 1. 6739 4428 —. . 7189 —. 0747 12.20 3.7514 .1031 —. 0203 .2468 -
3.6 1. 6960 . 4305 —. 0664 . 7162 —. 0745 12.60 3.7011 . —. 0192 . —. 0332
3.65 1.7179 .4362 - L7115 —. 0743 13.00 3.8276 .0877 —. 0181 . —. 0317
3.7 1.7308 L4329 —. 0855 L7078 —. 0741 18. 3.8771 . 07713 —. 0166 2018 -
3.7 1.7611 . 4206 - L7041 —. 0739 14.20 3. 9208 . 0670 —. 0151 L1847 —. 0278
3.8 1, 7826 L4264 —. 0846 . TO04 —. 0738 14.80 3.9687 . 0592 —. 0138 .1 —_
4.85 1.8308 .4232 —_ . 6967 - 15.40 3.6018 . 0513 —. 0128 .1538 —. 0230
3.9 1. 8249 - 4200 —. 0638 . 6930 —. 0734 16. 00 40204 . —. 0114 . 1399 —. 0223
3.95 1.8458 .4168 - . 6393 - 17.00 4.0501 . 0335 —. 0097 .1189 —. 0197
4.00 1. 8685 .4136 —. 0620 . 6857 —. 0729 18.00 4. 0880 . 0248 —_ .1003 —. 0175
4.05 1.8871 .4105 - . 0821 —_ 19.00 4.1088 .0171 —. 0069 . 0839 —. 0154
4,10 1. .4074 —_ .6784 —. 0725 20.00 4.1226 .0108 —. . 0694 —. 0137
413 1, 9157 . 4061 —. 0819 L6770 —. 0725 21.00 4.1308 0057 —. 0048 . 0585 —. 0121
4.14 . . 4049 —. 0617 . 6755 —. 0724 2,00 4.1343 . 0015 - . 0452 —. 0107
(b) Prandtl number, 0.72 (¢) Prandtl number, 0.733
n F F F H " P F F F H H
0 0. 0000 0. 0000 0.6760 1.0000 |—0.5046 1] 0. 0000 0. 0000 0.6741 1.0000 {—0.5080
.1 . 0032 . 0627 .5785 L0405 | —. 5046 .1 .0032 . 0025 .5767 2 | -
. .0122 . 1159 .4880 8091 | —. .2 L0122 L1155 .4840 8084 | —.
.3 . 0261 . 1602 . . —. 5016 .3 . 1597 . B4T8 | —.
. 0440 .1062 .3210 7880 | —.4979 .4 .0438 .1055 L3184 7975 | —.5012
.5 . 0651 . 2248 L2479 7403 | —.4921 .5 . 0649 . . 2485 L7477 | —.4953
.8 . . .1817 . - .8 .0884 L M61 .1804 L6085 | —.4870
-7 L1141 . 2812 1224 L8526 | —.4735 .7 L1137 J2801 | .. . —.4763
.8 . . . 0700 . - .8 .1 . 2695 . 0691 L6033 | —.4
.9 .1681 L2754 O0M8 . —. 4456 .9 .1674 L2741 . 5578 | —. 4478
1.0 . 1957 L2750 | —.0143 L5168 | —. 1.0 L1049 L2745 | —.0149 L5139 | —.
L1 . 2231 L2728 | —.0468 4749 | —. L1 B L2713 A —.0473 .4718 | —.4110
L2 .2501 2667 | —.0734 . —. 3801 1.2 *. 2400 2662 | —.0737 317 | —.
L3 2764 W2683 | —. . —. 3676 1.3 . 2752 .2568 | —.0048 .3838 | —.
L4, L3017 L2480 | —.1108 L3815 | —. 14 . 3465 | —.1108 L3581 | —.
L5 . 3260 2363 | —.1224 . - 1.5 . 3244 248 | - 3248 | —.
18 . 3490 238 | —.1302 . - 16 U3 2222 | —. 2835 | —.
L7 . L2104 —. 1347 . 2681 —. 37756 L7 . . 2090 —. 1342 2647 -
1.8 . 3610 .1888 | —.1363 L2415 | —. L8 L3861 L1054 | —. 13588 2381 | —.25649
1.9 .4100 .1 —. 1356 L2170 - 1.9 .4079 .1819, | —.1350 2136 | —.
2.0 . L1697 | —.1331 45 | —.2141 2.0 L4254 1685 | —.1324 L1013 | —.2130
2.1 . L1686 | —.1200 1741 —. 1049 2.1 4416 . —.1283 .1710 —.1937
2.2 . L1440 | —.1238 .1565 | —.1768 2.2 .4585 L1420 | —.1230 L1528 | —.1754
2.3 AT .1319 | —. 1178 L1387 | —.1 2.3 . 4702 L1309 | —. 1170 L1359 | —. 1584
2.4 . 1204 —. 1113 1235 | —.1441 2.4 .1195 —. 1104 . —. 1427
2,5 . 4069 1097 | —.1 .1098 —_ L5 L4041 1088 | —.1035 1073 | —.1281
2.6 . 5074 L0098 | —. . —.1163 2.8 . 5046 0988 | —. L0952 | —.1148
2.7 . 5168 . -. . —. 1041 2.7 .5139 . 0805 - .0843 —. 1028
2.8 . 0815 | —. L0767 | —.0930 2.8 524 L0800 | —. 0748 | —.0918
2.9 . 0735 | —.0767 0870 | —. 2.9 . 5301 0720 | —. .0860 | —.0816
3.0 . 5401 L0661 | —. 0601 | —. 3.0 6370 0857 | —. .0383 | —.
3.1 5464 L0594 | —. .0531 | —.0857 3.1 L5433 L0590 | —. 0514 | —.
3.2 . 5620 . - 0469 | —. 3.2 ggg L0530 | —.0578 . -
3.3 . 5671 L0477 | —.0531 0414 | —.0518 3.3 . 0475 | —. L0400 ( —.
3.4 .5018 L0427 | —.0481 L0385 | —. 3.4 . 5384 0425 | —.0474 .0352 | —.
3.6 . 5692 0330 | —. 084 | -, 3.8 . 5660 0338 | —. 0273 { —.
3.8 .57135 L0260 | —. 0817 0220 | —,0281 3.8 5720 .0269 | —.0312 g1 | —.
4.0 . 8801 .0212 | —, 0255 0170 | —.0219 4.0 . 5769 03 | —. 0183 | —.
4.2 L5838 L0166 | —. .0132 | -—.0170 4.2 . 5807 0180 | —. .0128 | —.0184
4.4 . L0130 | —.0182 L0102 | ~.0132 4.4 . 5837 .0133 | —.0159 L0097 | —.0127
4.6 . 5801 L0101 | —.0128 L0078 | —.0102 4.8 . 5860 L0105 | —.0125 L0074 | —.
4.8 . 5908 .0078 | —.0102 L0060 | —. 4.8 .5879 L0082 | —.0089 L0057 | —.
5.0 5022 L0060 | —. L0048 | —. 5.0 . 5803 L0065 | —. 0044 | —.
5.2 L5033 L0048 | —. L0035 | —. 5.2 . 5905 0051 | —. 0033 | —.
5.4 L5041 L0034 | —. L0027 | —. 5.4 . 5014 L0040 | —.0047 L0025 | —.
5.8 . 5851 L0019 | —. L0015 | —. 5.6 . 5921 L0032 | —.0038 L0019 | —.
6.2 . 59567 L0010 { —.0018 L0009 | —.0013 58 . 5927 L0025 | —. 0015 | —.
6.8 . 5060 L0003 [ —. L0003 | —. 6.0 . 5832 0021 | —. .0011 | —.0016
7.3 . 5961 . - L0001 | —. 6.4 . 5838 .0014 | —.0013 0008 | —.
8.8 .53 L0010 | —. 0003 | —.
7.2 . 5046 .0007 | —.0004 L0001 { —.
7.6 . 5049 0008 | —. L0000 | —,
8.0 . 5051 .0005 | —.0001 .0000 | —.0001
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TABLE I.—FUNCTIONS F AND H AND DERIVATIVES FOR VARIOUS PRANDTL NUMBERS—Continued

f
(d) Prandtl number, 1 {e) Prandtl number, 2
, -
1 F pad F H H 7 F F F H H'
0 0. 0000 Q. 0000 0.6421 1.0000 | —0.5671 0 0. 0000 0. 0000 0. 5713 1.0000 | -0.71685
.1 . 0030 .0593 . L9433 - .1 . L0523 L4749 L0284 —. 7161
.2 0115 .1092 . . 8867 - .2 . 0101 L0953 .38681 . 8569 -
.3 . 1503 . 3894 .8302 - .8 .0215 L1297 . 3040 . 7858 —. 7060
4 L0413 L1833 .2018 LT742 - .4 .0358 15685 .2318 L7157 —, 6040
.5 . 0610 . . 2208 .7189 - .5 .0525 .1763 .1666 . —. 67
.6 . 0829 By .1572 . 6645 - .6 . 0709 .1901 .1006 . —. 8523
T L1064 . 2406 .1008 .6116 —_ .7 . 0904 .1985 . 0602 .5168 —. 6215
.8 .1308 <2481 .0516 . 5602 - .8 L1104 2024 .0185 4564 —. 5852
.9 .1558 . 2511 . 0093 .5109 - .9 .1307 2024 | ~—.0161 . —. 5443
L0 .1809 2602 | —. . 4638 —. 4580 L0 ~.1 L1094 | —.0440 . 3476 -
L1 L2038 L2461 | —. 4102 - L1 L1705 L1938 | —*08569 . —.4543
L2 2300 L2393 | —. 32 - 1.2 .1886 .1884 | —.0824 -
L3 .2535 .2804 | —.0975 . 3381 — 1.3 L2077 A775 | —.0042 L2183 —. 3610
L4 - L2761 L2199 | —.1110 .3018 - L4 2250 . —.1020 .1844 —.
L5 2876 . 2083 - . 2684 —.3197 LS5 .M12 L1572 | —.1063 . 1547 —. 2763
L6 3177 | .1980 | —. 2379 —. 2015 L6 . 2564 L1485 | —.1078 1200 -
L7 .8367 (1832 | —.1287 .2101 - L7 . 2708 . —.1071 .1069 -
18 3543 1708 | —. .1 - 1.8 . 2836 —.1046 . —-. 1721
1.9 .3707 JA576 | —. 1624 —. 2136 1.9 . 2056 .11490 | —.1008 . —. 1446
2.0 . 3859 1450 | —. .1422 —.1907 2.0 . 3066 .1050 | —.0060 . 0592 —. 1207
21 .3997 1239 | —.1186 1242 —. 1685 2.1 . 3166 L0857 | —. .0482 —.1001
232 .4125 1213 | —. .1082 —. 1501 2.2 3257 0369 | —.0849 L0391 -
2.3 4240 L1104 | —.1064 V0941 —. 133 2.3 L3340 0787 | —.0789 .0316 -
2.4 4348 .1001 - .0817 —.1184 2.4 L3415 L0711 - . -
2.5 4441 L0904 | —. .0708 —. 1020 2.5 .8483 L0841 | —. 0204 —. 0450
2.6 . 4527 0818 | —. .0613 - 2.6 .35643 .0577 | —.0814 .0164 —
27 L4604 0733 | —.0m01 . 0529 —. 2.7 .3508 L0518 | —. .0131 -
2.8 .4673 L0857 | —. 0457 —. 0676 2.8 . 3847 . - .01 -
2.9 .4738 .0588 | —. .0393 - 2.9 . 3691 L0417 | —.0461 . -, 0190
3.0 .4781 L0524 | —. . 0339 - 3.0 .3731 .73 | —.0418 . 0088 —. 0152
3.1 L4841 L0467 | —. - 0201 - 3.1 .3766 .0333 | —.0375 . 0053 -, 0121
3.2 .4885 L0456 | —. 0433 .0250 —. 0381 3.2 .3708 L0208 ) —. .0042 -
3.3 L4924 L0388 | —. . 0215 - 3.3 . 3826 L0286 | —. . 0033 -
3.4 . 4959 L0328 | —. L0185 - 3.4 . 3851 L0237 | —. . 002 —. 0061
3.6 .5018 L0254 | —.0321 .0138 —. 0210 3.6 .3893 .0188 —.0218 .0017 -
3.8 . 5061 L0197 | —. . 0009 —. 0155 3.8 .3927 0149 | —.0174 .0010 -
4.0 . L0151 | —.0202 .0072 —.0115 4.0 3053 .0018 | —.0138 . 0007 —. 0015
4.2 . .0116 | —.0158 . 0053 _ 432 L3974 L0094 | —.0109 . 0004 -
4.4 L5143 .0087 | —.012¢ |, .0038 — 4.4 .3901 0074 | —. . 0003 -
4.6 . .0086 | —.0008 .0027 —. 4.6 L4004 L0059 | —. . 0002 -
4.8 . 5168 .0049 | —.0075 . 0020 - 4.8 .4016 L0047 | —. . 0001 —_
5.0 5177 L0035 | —. . 0014 - 5.0 .4023 L0037 | —. . 0001 —. 0001
5.3 . 5183 L0025 | —. .0010 —. 0018 5.4 . 40356 L0024 | —. . 0001 —. 0001
55 .5189 L0014 | —. . 0006 —.0011 5.8 .4043 .0015 | —.0016 . 0000 . 0000
6.0 L5104 L0004 | —.0014 . 0002 . 0005 6.4 L4049 L0008 | —. . 0000 . 0000
6.25 L5194 .0000 | —.0010 . 0000 —. 7.0 . 4053 L0005 | —. . 0000 . 0000
8.0 .4058 .0002 | —.0001 . 0000 . 0000
9.0 . 4058 . 0001 . . 0000 . 0000
10.0 . 4059 . 0001 . 0000 . 0000 . 0000
1.0 . 4059 ..0001 . 0000 . 0000 . 0000
(f) Prandtl number, 10 (8). Prandtl number, 100
3 F ¥ Fit H H’ 7 F F F H H
0 0.0000 | 0.0000 | 0.4192 L0000 | —1.1604 0.000 | 0.0000 0. 0000 0. 2517 L0000 | —2.191
.1 . 0019 .0371 .3251 L8832 | —L 1671 .025 . 0001 . 0060 L2274 LB482 | —2.101
.2 . . 0854 .2428 L7670 | —L 1521 .050 . 0003 L0114 . . —2.188
.3 .0147 . 0861 1723 .6534 | —L1185 |” 075 . 0008 .0162 . .8369 | —~2.180
-4 L0241 .1003 - 5448 | —1.0528 . . 0011 . 0205 .1626 L7816 | —2.166
.5 .0346 .1091 . 0655 . 4437 —. 9640 - 125 L0017 L0244 . 1438 L7276 | —~2.144
.6 . 0458 .1137 .0279 L8527 —. 8545 . 150 . 0023 L0277 L6744 | —2.113
.7 . 21350 .| —.0011 .2733 - 175 . 0031 0307 .1101 L6221 | —2.071
.8 .0687 L1137 | —.0221 2064 - +200 . 0039 . 0332 . 0952 5709 | —2.018
.9 . 0500 107 | —.0367 .1519 —. 4840 . 225 . 0047 . 0355 . 0816 L5213 | —~L954
LO . L1066 | —. 0462 . 1000 —.3763 . 250 . 0056 .0373 . 0692 .4733 | —L8%0
L1 1012 .1016 | —. .0763 - . 375 . 0066 . 0389 . 0580 . —~1,786
L2 111 L0063 | —.0M5 .0522' | —.2045 .300 .0076 . 0402 . 0470 .3636 | —~1.704
L3 . 1205 .0%08 | —. . (0349 —. 1445 .325 . 0088 L0413 . 0389 L3422 | —1.604
4 L4 1203 0853 | —. . —_ .350 . L0422 . 0309 . —1.488
LS .1378 .0788 | —. .0146 —. 0665 .375 L0107 .0429 .0238 . —1.388
Lé 1453 L0748 | —. .0092 - 2400 .0118 L0434 .0178 2341 | —1.278
L7 .1625 L0699 | —. . 0056 - .425 .0129 . 0438 .0123 L2038 | —1.163
18 .1593 .0852 | —.0463 .0034 —. 0174 .450 . 0140 . 0440 . 0076 L1769 | —1.052
L9 .1658 L0608 | —.0427 .0020 —. 0107 .475 . 0151 . 0442 .0036 .1510 —. 0430
2.0 . 1714 .0567 | —. .0012 - . 500 .0162 L0442 . 0002 L1287 —. 8303
21 . 1769 .0338 | —.0375 .0007 - . 525 L0173 L0442 |~ .1089 —. 7404
2.2 L1820 L0401 | —.0351 . 0004 - . 550 .0184 L0441 | —. .0918 —., 6478
2.3 . L0458 f —. . 0002 —. 0013 . 576 .0183 L0439 | —. .0766 —. 5021
2.4 .1912 L0426 | —. .0001 —_ .600 . 0206 L0437 | —. . 0034 —. 4837
2.5 .1953 L0388 | —. .0001 - .65 . 0227 .0432 | —.0111 L0427 —. 3400
2.6 L1091 L0369 | —. L0000 | —. .70 . 0249 L0426 | —.0128 . 0280 -
2.7 . 2027 L0343 | —. . 0000 —. 0001 .75. .0270 .0420 | —.0135 .0178 —. 1657
28 <2060 .0319 | —. . 0000 —.0001 .80 0201 .0413 | —.0140 L0111 —.1088
2.9 - 2090 .0297 | —. 0218 . 0000 . 0000 .85 .0311 .0406 | —. 0142 .0067 —. 0603
3.0 .2119 .0376 | —.0201 . 0000 . 0000 .90 .0331 0309 | —.0142 .0039 -—. 0428
3.1 . 2146 .25 | —.0187 . 0000 . 0000 .96 . 0351 0392 | —.0141 . 0022 —. 0258
3.2 L2170 .0238 | —. 0174 . m . 0000 1.00 .0371 .0385 | —.0140 .0012 —. 0149
3.3 .2193 0221 | —.0162. . . 0000 L10 . 0408 L0371 | —.0136 . 0004 —. 0046 | .
3.4 <2213 L0208 | —. 0151 . 0000 . 0000 1L.20 L0445 .0357 | —.0132 . 0001 —. 0013
3.6 . 2253 .0178 | —.0131 . 0000 . 0000 L30 . (480 .0344 |} —. 0128 . 0000 —. 0003
3.8 . 0153 | —. .0000 . 0000 1.40 . 0514 L0332 | —. . 0000 —. 0001
4.0 . 2314 L0132 | —. . 0000 . 0000 L50 . 0546 .0320 | —.o119 . 0000 . 0000
4.2 . 014 | —. . 0000 . 0000 Lo .0578 .0308 | —.0118 . 0000 . 0000
4.4 . 2360 L0098 | —. . 0000 . 0000 L70 . 0608 L0297 | —. 0112 . 0000 . 0000
4.6 . 2379 .0085 | —. . 0000 . 0000 L8 . 0637 L0286 | —.0 . 0000 . 0000
4.8 3B 0073 | —. . 0000 . 0000 190 . 0665 L0275 | —.0104 0000 . 0000
50 .2408 L0063 | —.0047 . 0000 . 0000 2.0 . 0692 L0285 | —.0101 . 0000 . 0000
5.4 <2430 0047 | —. . G000 . 0000 2.1 .0718 L0285 | —.0097 . 0000 . 0000
5.8 L2448 L0035 | —. . 0000 . 0000 2.2 .0743 L0245 | —.0004 . 0000 . 0000
6.2 L2458 L0028 | —.0019 . 0000 . 0000 23 .0767 .0236 | —.0091 . 0000 . 0000
7.0 S2HT74 .0014 | —.001L . 0000 . 0000 2.4 .0700 027 | —. . 0000 . 0000
80 . L0007 | —. .0000 . 0000 2.6 . 0834 L0210 | —. . 0000 . 0000
9.0 <2489 .0003 | —.0002 . 0000 . 0000 2.8 .0874 L0195 | —. . 0000 . 0000
10.0 491 .0002 | —. 0001 . 0000 . 0000 3.0 .0912 L0180 | —. . 0000 . 0000




FREB-CONVECTION FLOW AND HEAT TRANSFER ABOUT A FLAT PLATE

TABLE I.—FUNCTIONS F AND H AND DERIVATIVES FOR VARIOUS PRANDTL NUMBERS—Concluded

(g) Prandtl number, 100—Concluded (b) Prandtl number, 1000
n F F F H R’ 3 F F b add H oy

3.2 0.0917 0.0166 | —0.0086 | 0. 0000 0. 0000 0. 0. 0000 0. 0000 0.1450 | 1.0000 | —-3.966
3.4 0164 —. 0061 . 0000 . 0000 .025 . 0000 . 0033 1212 L0009 | —3.062
3.6 1008 0142 —. 0058 . 0000 . 0000 .050 .0002° . 0061 . L8021 | —3.933
3.8 1035 0131 —. 0052 0000 . 0000 075 . 0003 0083 .0811 7046 | —3.861
4.0 . 1061 .0131 —. 0048 000D 0000 .100 . 0008 .0102 . 0847 L6098 | —3.731
4.4 .1106 .03 —. 0042 . 0000 . 0000 -125 . 0118 . 0508 5188 | —3.538
4.8 .1143 . —. 0038 . 6000 . 0000 .150 .0012 .0127 .0387 L4332 | —3.283
5.2 1176 0074 -;.0031 0000 . 0000 175 0015 .0135 . 0289 8549 | —2.975
56 1203 0063 ~. 028 G000 0000 .200 0018 . 0142 . 0209 L2847 | —2.428
6.0 1228 0053 —. 0022 . 0000 0000 225 . 0022 0146 .0140 .2238 | —2.281
6.6 L1254 0041 —. 0018 . 0000 0000 250 . 0028 0149 . 0088 L1717 | —1.893
7.2 L1276 . 0032 —. 0014 . 0000 . 0000 2278 . 0028 161 . 0059 L1288 | —1.541
8.0 . 0022 ~-. 0010 . 0000 . 0000 . 300 . 0033 L0152 .0033 004 ) —-1.220

0.0 1315 .0014 ~. 0007 . 0000 . 0000 <825 . 0037 .0153 . 0012 . 0875 -
10,0 1326 —. 0005 . 0000 0000 .350 . 0041 L0153 —. 0003 0471 —. 7012
11.0 1332 0004 —. 0003 0000 0000 375 . 0045 0162 —. 0012 .0321 —. 5093
12.0 1335 0002 —. 0002 . 0000 0000 . 400 0018 L0152 —. 0019 .0213 —. 3590
13.0 1338 0000 ~—. 0001 . 0000 0000 425 . L0152 —. 0023 .0138 -~ 2467
450 . 0056 . 0151 —. 0026 . 0087 —. 1645
.475 . 0060 L0150 —. 0027 . 0053 —.1088

- .500 . 0063 0150 —. 028 . 0032 -

525 0087 0149 —. 0029 . 0019 -
. 550 0071 . 0148 —. 0029 . 0011 —. (245
515 0076 0147 —. 0020 . 0008 -.0142

. 600 0078 0147 —. 0029 . 0003 -
. 625 . 0082 01468 —. 0029 . 0002 —. 0044
. .800 L0107 141 —. 0028 . 0000 . .0000
1. 000 . 01356 .0138 —. 0027 . 0000 . 0000
1.40 . 0187 . 0125 —. 025 . 0000 . 0000
. 1.80 0116 —. 0023 . 0000 . 0000
2.20 . 02370 . 0108 —. 0022 0000 . 0000
2.60 0320 . 0098 —. 0020 . 0000 . 0000
3.0 . 0090 —. 0019 . 0000 . 0000
3.6 . 0409 . 0080 —. 0017 . 0000 . 0000
4.2 0454 . 0070 -. 0015 - 0000 . 0000
5.0 . 0060 -, 0012 . 0000 . 0000
5.8 0519 . 0050 —. 0011 . 0000 « 0000
7.0 . . 0039 —. 0008 . 0000 . 0000
. 8.0 . . 0032 —. 0007 . 0000 . 0000
10.0 . 0681 . 0022 —. 0004 . 0000 0000
12.0 T2 . 0015 —. 0003 . 0000 0000
14.0 0752 . 0011 —. 0002 . 0000 . 0000
16.0 .07 . 0008 —. 0001 . 000D . 0000
18.0 0788 . 0007 0000 . 0000 . 0000
20.0 . . 0006 0000 - 0000 . 0000
22.0 0809 . 0005 . 0000 . 0000 . 0000
. 23.8 .0816 . 0005 0000 + 0000 . 0000







